Table S10. Studies assessing association between *E. multilocularis* infection in foxes and host population factors | Reference | Study Information | Statistical Method | Significant Factor | |----------------------------------|---|--|--| | Saitoh et al., 1998
[103] | Post mortem
examination of 9,828
red foxes in Hokkaido
(Japan) | Multivariable logistic regression | Vole abundance affected infection rates in foxes (<i>p</i> <0.001) | | Hofer et al., 2000 [76] | Post mortem
examination of 388 red
foxes in in Zurich
(Switzerland) | Univariable analysis | Higher prevalence in foxes from rural areas (p<0.01) vs. urban areas during winter | | Stieger et al., 2002
[102] | Coproantigen
examination of 604
fox faecal samples in
Zurich (Switzerland) | Univariable analysis | Higher positive results in border and periurban zone compare to urban zone during winter (<i>p</i> <0.01) | | Raoul et al., 2003
[105] | Coproantigen
examination of 156
fox faecal samples in
Le Souillot (France) | Univariable analysis | Decrease of infection as fox numbers reduce (<i>p</i> =0.0004) | | Fischer et al., 2005 [78] | Post mortem
examination of 267
foxes in Geneva
(Switzerland) | Multivariable logistic regression | Level of urbanization.
Rural vs urban (OR 2.73, 95%CI 1.24-5.97, <i>p</i> =0.012) and border vs urban (OR 2.32, 95%CI 1.03-5.18, <i>p</i> =0.04) | | Tanner et al., 2006
[104] | Post mortem
examination of 543
foxes in Grisons
(Switzerland) | Linear correlation
(Spearman's rank
coefficient) | Prevalence correlated with predation on intermediate hosts (<i>Microtus/Pitymys</i>) (<i>p</i> =0.018) | | Miterpáková et al.,
2006 [89] | Parasitological
examination of 3,096
foxes in Slovakia | Simple correlation | Prevalence correlated with density of small mammals (<i>p</i> =0.022) | | Reperant et al., 2007 [100] | Post mortem
examination of 228 red
foxes in Geneva
(Switzerland) | Multivariable logistic regression | Decrease prevalence from rural to urban areas (<i>p</i> =0.037) | | Hegglin et al., 2007 [82] | Post mortem examination of 582 foxes in Zurich (Switzerland) | Multivariable logistic regression | Type of urbanization zone (AICc weight=1) (i.e. Border vs. periurban, OR 0.46 95%CI 0.25-0.85) and zone age (marked for adults) (AICc weight=0.45) 1 | | Hanosset et al., 2008 | Post mortem | Linear correlation | Positive correlation | | [93] | examination of 990
foxes in Wallonia
(Belgium) | (Spearman's rank coefficient) | between prevalence in foxes and muskrats (Spearman's rank correlation coefficient=1, $p < 0.0001$) | |--------------------------------|---|-----------------------------------|--| | Robardet et al., 2008
[101] | Post mortem
examination of 127 red
foxes in Nancy
(France) | Multivariable logistic regression | Type of urbanization zone (AICc weight=0.94). Urban vs. rural (OR 0.04, 95%CI 0.01-0.14) and peri- urban vs. rural (OR 0.38, 95%CI 0.14-1.01). | Measures of association reported when available criterion corrected for small samples sizes. ^(*) Interaction term. The model explaining best the prevalence rate in foxes (lowest AICc) included the variables *Zone*, *season*, *age*, *zone* × *age*, *season* × *age*. Abbreviations: OR, odds ratio; CI, confidence interval; AICc, Akaike's information